Duality between quantum and classical dynamics for integrable billiards.

نویسندگان

  • W T Lu
  • Weiqiao Zeng
  • S Sridhar
چکیده

We establish a duality between the quantum wave vector spectrum and the eigenmodes of the classical Liouvillian dynamics for integrable billiards. Signatures of the classical eigenmodes appear as peaks in the correlation function of the quantum wave vector spectrum. A semiclassical derivation and numerical calculations are presented in support of the results. These classical eigenmodes can be observed in physical experiments through the autocorrelation of the transmission coefficient of waves in quantum billiards. Exact classical trace formulas of the resolvent are derived for the rectangle, equilateral triangle, and circle billiards. We also establish a correspondence between the classical periodic orbit length spectrum and the quantum spectrum for integrable polygonal billiards.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational Study of the Quantization of Billiards with Mixed Dynamics

We examine the relationship between the spectrum of quantum mushroom billiards and the structure of their classical counterparts, which have mixed integrable-chaotic dynamics. Accordingly, we study the eigenvalues corresponding to eigenfunctions of the stationary Schrödinger equation with homogeneous Dirichlet boundary conditions on half-mushroom-shaped geometries for very high energies/wavenum...

متن کامل

Generic spectral properties of right triangle billiards

This article presents a new method to calculate eigenvalues of right triangle billiards. Its efficiency is comparable to the boundary integral method and more recently developed variants. Its advantage is its simplicity and explicitness, which allow new insight into the statistical properties of the spectrum. It is shown how the genus of the invariant surface of the classical billiard flow, det...

متن کامل

Nodal domains statistics: a criterion for quantum chaos.

We consider the distribution of the (properly normalized) numbers of nodal domains of wave functions in 2D quantum billiards. We show that these distributions distinguish clearly between systems with integrable (separable) or chaotic underlying classical dynamics, and for each case the limiting distribution is universal (system independent). Thus, a new criterion for quantum chaos is provided b...

متن کامل

A ug 2 00 0 Morphological Image Analysis of Quantum Motion in Billiards

Morphological image analysis is applied to the time evolution of the probability distribution of a quantum particle moving in two and three-dimensional billiards. It is shown that the time-averaged Euler characteristic of the probability density provides a well defined quantity to distinguish between classically integrable and non-integrable billiards. In three dimensions the time-averaged mean...

متن کامل

Transitions to quantum chaos in a generic one-parameter family of billiards

Generic one-parameter billiards are studied both classically and quantally. The classical dynamics for the billiards makes a transition from regular to fully chaotic motion through intermediary soft chaotic system. The energy spectra of the billiards are computed using finite element method which has not been applied to the euclidean billiard. True generic quantum chaotic transitional behavior ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 73 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006